Generalizable end-to-end deep learning frameworks for real-time attitude estimation using 6DoF inertial measurement units


This paper presents a novel end-to-end deep learning framework for real-time inertial attitude estimation using 6DoF IMU measurements. Inertial Measurement Units are widely used in various applications, including engineering and medical sciences. However, traditional filters used for attitude estimation suffer from poor generalization over different motion patterns and environmental disturbances. To address this problem, we propose two deep learning models that incorporate accelerometer and gyroscope readings as inputs. These models are designed to be generalized to different motion patterns, sampling rates, and environmental disturbances. Our models consist of convolutional neural network layers combined with Bi-Directional Long–Short Term Memory followed by a Fully Forward Neural Network to estimate the quaternion. We evaluate the proposed method on seven publicly available datasets, totaling more than 120 h and 200 kilometers of IMU measurements. Our results show that the proposed method outperforms state-of-the-art methods in terms of accuracy and robustness. Additionally, our framework demonstrates superior generalization over various motion characteristics and sensor sampling rates. Overall, this paper provides a comprehensive and reliable solution for real-time inertial attitude estimation using 6DoF IMUs, which has significant implications for a wide range of applications.

*Journal of the International Measurement Confederation
Click the Cite button above to import publication metadata.
Create your slides in Markdown - click the Slides button to check out the example.

Model A

Model A Model B Model C
Arman Asgharpoor Golroudbari
Arman Asgharpoor Golroudbari
Space-AI Researcher

My research interests revolve around planetary rovers and spacecraft vision-based navigation.